

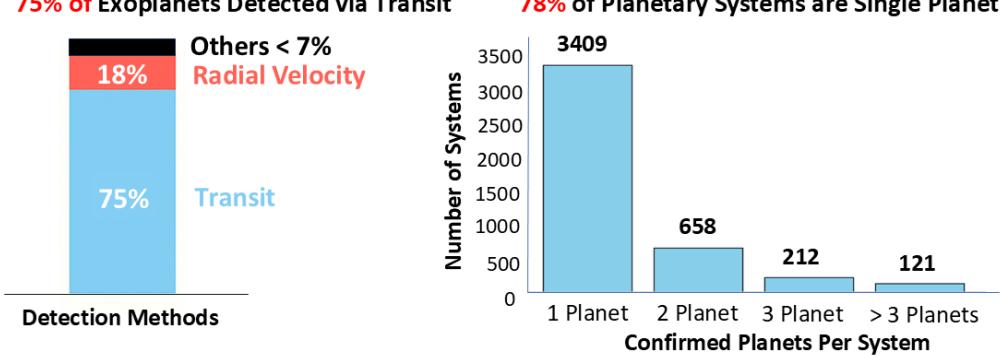
NEPTUNE: N-body Exoplanet Prediction

Using TTV for Unseen Exoplanets

Arushi Nath

CHALLENGE

Exoplanet Detection Bias Distorts Our View of Planetary Systems


Most known exoplanets are detected using the **transit** method, which favors planets that orbit close and nearly edge-on to their stars

Outer planets often remain undetected:

- Have longer orbital periods \rightarrow Fewer transits
- May have slight inclination \rightarrow Prevents observable transits

Total Confirmed Exoplanets: 5845

75% of Exoplanets Detected via **Transit** 78% of Planetary Systems are Single Planet

Charts created by finalist using data from NASA Exoplanet Archive 2025

Missing outer planets significantly undercounts multi-planet systems, leading to an incomplete view of planetary system architectures

How Transit Timing Variations (TTVs) Reveal Multi-Planet Systems

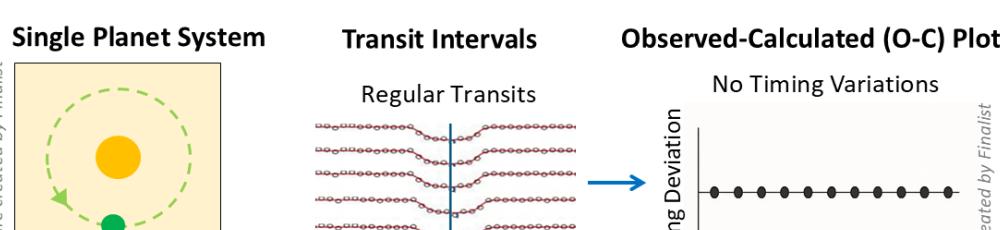


Figure created by finalist

Outer planet gravitationally pulls on inner planet causing it to orbit faster or slower

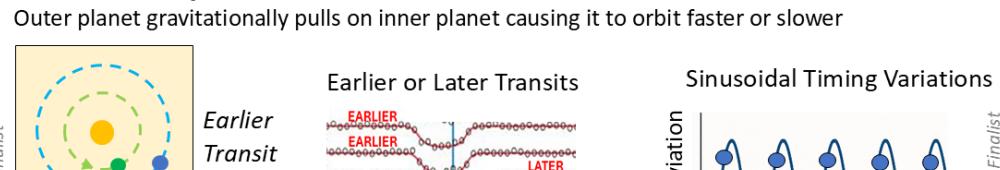


Figure created by finalist

Neptune was discovered from Uranus's timing shifts

Why Accelerate TTV Analysis?

Breakthrough Discoveries

- 36 exoplanets confirmed via TTVs
- 22 single-planet systems upgraded to multi-planet status

Discovery Potential

- Kepler: 260 strong, 650 moderate TTVs
- TESS: 30+ planets with TTVs
- Ground telescopes constantly update TTV data

Key Challenges

- Requires multi-year monitoring
- Computationally demanding analysis
- Multiple planet parameters can produce same solutions (degeneracies)
- e.g. High-mass + low-eccentricity, or Low-mass + high-eccentricity

Decoding TTVs requires long baselines and breaking degeneracy

RESEARCH GOALS

Goal
Accelerate the detection and characterization of hidden (non-transiting) exoplanets in multi-planet systems using **Transit Timing Variations (TTVs)**

Objectives

- Simulate realistic TTV signals to analyze gravitational interactions between planets in multi-planet systems
- Estimate planet masses, orbital periods, and eccentricities by resolving degeneracies using **Machine Learning**, **Bayesian Inference**, and **multi-period fitting**
- Validate the model by comparing predictions against known TTV systems and quantifying uncertainties
- Apply the model to **Kepler** and **TESS** data to discover new exoplanet candidates

DATA SOURCES

NEPTUNE: Powered by Open Science, Open Source, Open Data

Data Sources

- TTV Catalog: Kepler and TESS Data Release
- Transit Timings: MAST Archive
- Ephemeris: NASA Exoplanet Archive
- Radial Velocity: HARPS Catalog

Open Robotic Telescopes Network

- Burke-Gaffney Observatory (Canada)
- Alnitak Observatory (Spain)

Modeling and Analysis Tools

- N-Body integrator: REBOUND (IAS15)
- Signal Processing: Scipy, Astropy
- Machine Learning: scikit-learn
- Bayesian Inference: emcee, corner

Networks and Forums

- Citizen Science: Ariel ExoClock, ExoFOP
- Forums: Royal Astronomical Society of Canada, Exoplanet Watch, British Astronomical Association

SELECTED REFERENCES

Deck, K. M., & Agol, E. (2015). Measurement of planet masses with transit timing variations due to syzygetic effects. *The Astrophysical Journal*, 802(2), 116. <https://iopscience.iop.org/article/10.1088/0004-637X/802/2/116>

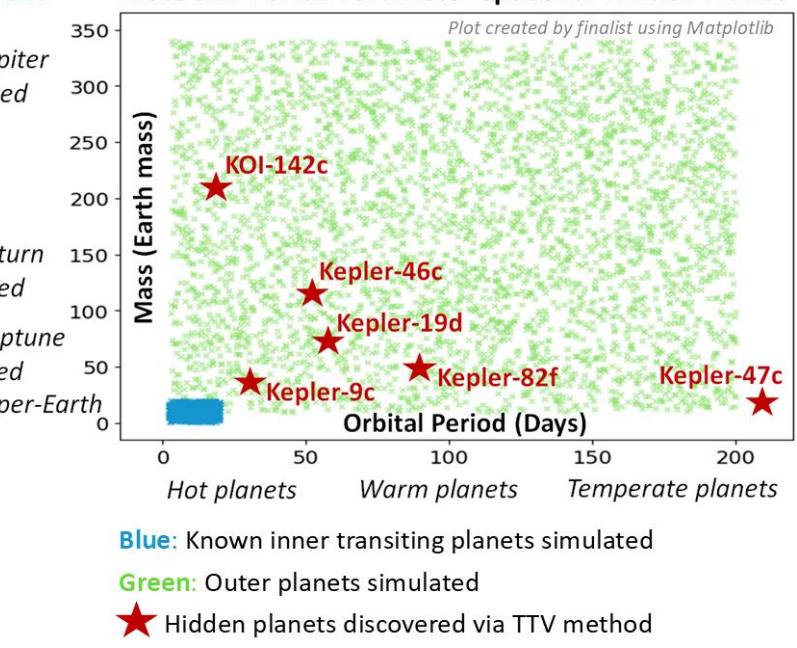
Holman, T., et al. (2016). Transit timing observations from Kepler. IX. Catalog of the full long-cadence data set. *The Astrophysical Journal Supplement Series*, 225(1), 9. [https://iopscience.iop.org/article/10.3847/0067-0049/225/1/9/pdf](https://iopscience.iop.org/article/10.3847/0067-0049/225/1/9)

Holman, A., et al. (2025). Architecture classification for exoplanetary planetary systems. *The Astronomical Journal*, 160(9), 149. <https://doi.org/10.3847/1538-3881/edab5>

Nesvorný, D., & Morbidelli, A. (2009). Mass and orbit determination from transit timing variations of exoplanets. *The Astrophysical Journal*, 672(2), 1165–1179. <https://iopscience.iop.org/article/10.1088/0004-637X/672/2/1165>

Weiss, L. M., et al. (2024). The Kepler giant planet search. I. A decade of Kepler planet-host radial velocities from W. M. Keck Observatory. *The Astrophysical Journal Supplement Series*, 270(1), Article 8. <https://doi.org/10.3847/1538-4365/edc4b>

METHODOLOGY


Step 1: 80,000 N-body Simulations Exploring 11 Parameters to Discover Hidden Planets

Parameter	Inner Planet (Transiting)	Outer Planet (Perturbing)
0.7 – 1.3 Solar Mass		
Stellar Mass	$1 - 20 M_{\odot}$ (Earth – Neptune mass)	$1 - 320 M_{\odot}$ (Earth – Jupiter mass)
Orbital Period	2 – 20 days (Short)	3 – 240 days (Long)
Eccentricity	0 – 0.07 (Low – Medium)	0 – 0.5 (Low – High)
Inclination	$87^{\circ} - 90^{\circ}$ (In-transit)	$50^{\circ} - 90^{\circ}$ (Out-of-transit)
Periastron Angle	-180° to $+180^{\circ}$	-180° to $+180^{\circ}$

Simulation Setup

- Sampling: Latin hypercube for uniform 11-D parameter space
- Duration: 1200 epochs (transits) per simulation
- Output: Transit Timing Variations (O-C Plot)
- Stability Filter: Systems must have ≥ 3.5 mutual Hill radii separation to avoid collisions/ejections

Mass and Period Parameter Space for Hidden Planet

DISCUSSIONS

Discussion 1: Informed Priors Accelerate Parameter Recovery 8x Faster

With Uniform Priors

Walkers explore full parameter space including unlikely regions \rightarrow (slower process: weeks)

Gelman-Rubin R: 8.76

Convergence in 2000 steps

Gelman-Rubin R: 1.06

Parameters Recovered

Period

Mass

Mass

Period

Mass

Period</p